
AD-A251 926 On PARALLL AND DISTRIBUTED SYSTEMS

AN EVOLUTIONARY APPROACH TO CONCURRENT

CHECKPOINTING 1

Junsheng Long, Bob Janssens, and W. Kent Fuchs D T IC _
Coordinated Science Laboratory S ELECTE

University of Illinois at Urbana-Champaign UN 2 4 1
1101 West Springfield Ave.

Urbana, IL 61801

Principal contact: Junsheng Long

long@crhc.uiuc.edu

(217) 333-8294
FAX: (217) 244-5686 92-16434

Abstract

This paper describes an evolutionary approach to establishing a consistent global recovery line

for concurrent processes. Unlike glcbally synchronized schemes, our approach uses no agreement

protocols and thus no rounds of messages to decide upon a recovery line. Unlike logging-based
schemes, our approach neither stores the messages exchanged between concurrent processes, nor

constructs message dependence graphs to determine a recovery line. In contrast to communication-
synchronized schemes, our technique reduces overhead by not always synchronizing computation

with checkpointing and by allowing a potentially inconsistent recovery line temporarily.

Evolutionary concurrent checkpointing periodically starts a checkpointing session by check-

pointing each process locally. As the checkpointing session progresses, the initial checkpoints are

updated according to the communication between the concurrent processes. This local checkpoint
updating guarantees that the recovery line evolves into a consistent line. Evolutionary concurrent

checkpointing can be applied to message-based multicomputer systems, shared virtual memory sys-

tems, and shared memory multiprocessors. We evaluate the performance of our approach using

execution traces from a hypercube multicomputer and a shared-memory multiprocessor.

Key Words: fault tolerant computing, checkpointing, and rollback error recovery.

'This research is supported in part by the Depastment of the Navy and managed by the Office of the Chief of

Naval Research under Contract N00014-91-J-1283, and in part by the National Aeronautics and Space Administration
(NASA) under Contract NAG 1-613, in cooperation with the Illinois Computer Laboratory for Aerospace Systems
and Software (ICLASS).

I fcr public- toeLe(:isc rr
distribution is un1imitet.L

1

I. INTRODUCTION

Rollback using checkpoints is the classic backward recovery method used in fault-tolerant

computer systems. In concurrent computation, independent checkpointing of individual processes is

inadequate since communication between processes may cause propagation of rollbacks, potentially

resulting in a domino effect [1-3]. To avoid rollback propagation, it should always be possible to

roll back to a consistent recovery line. A consistent recovery line is a set of checkpoints, one for

each process, across which there is no interprocess communication.

One approach to obtaining a consistent recovery line is to stop computation and synchronize

the concurrent processes at an agreed-upon point in time [3-5]. In some tightly coupled systems

it is possible to synchronize processors instantaneously [5]. However, typically this global synchro-

nization requires rounds of message exchanges. An alternative is to synchronize checkpointing with

communication [5-81. Whenever two processes communicate, checkpointing can be invoked in both

processes. The recovery line is always consistent since there is no communication across the cor-

responding checkpoints. During recovery, only the individual process encountering the error rolls

back, because the faulty process has not communicated since its last checkpoint. In the communi-

cation synchronized approach, checkpointing frequency is fixed and is dependent on communication

patterns.

Message logging is often used to reduce the cost of checkpoint operations [6,9, 10]. Instead of *

resending past messages during recovery, message logs are replayed to produce them. Optimistic t

logging [11-15], which can be viewed as communication synchronized checkpointing with deferred F

logging operations, is often used. Deferred logging often requires complex methods to keep message

dependence information for uncommitted message logs and to manage interleaving message retries ----...............

and message replays during recovery j Codes

Statement A per telecom Dist AvaI orDr. Clifford Lau Speci

ONR/Code 1114 v
Arlington, VA 22217-5000 NWW 6/23/92

2

Chandy and Lamport have shown that the global state of a distributed system consists of

both the states of individual processes and communication channels [161. They proposed to save

individual process states independently and log all messages sent by the processes before check-

pointing their states. A special marker message is broadcast to all other processes after the local

process makes its checkpoint. Provided a FIFO channel, all messages before the marker message

from the process are the ones that need to be logged. n broadcasting messages are required. This

approach has been applied to concurrent checkpointing in distributed systems [17-19]. With a

bounded communication latency and loosely synchronized clocks, the special marker messages can

be elimir.ated [20,21]. However, restoring the original message order after rollback often requires a

mechanism to determine when to replay from message logs and when to retry messages due to the

interleaving of logged messages and normal messages during checkpointing.

This paper describes an evolutionary approach to concurrent checkpointing. In this approach

computation periodically enters a checkpoint session, where a consistent recovery line evolves. A

checkpoint session can be initiated at any computation point. Upon receiving notification of the

start of a checkpoint session, each process independently takes a local checkpoint. The initial

recovery line, made up of the local checkpoints, may be inconsistent since no attempt has been

made to prevent communication across it. As computation progresses the local checkpoints are

updated whenever there is a communication between processes, as in the communication synchro-

nized approach. This local checkpoint updating causes the recovery line to evolve into a consistent

recovery line. At the end of the checkpoint session a consistent recovery line is guaranteed and its

checkpoints can be committed. The resulting global recovery line requires that all processes roll

back to their previous checkpoint if an error occurs. The frequency of checkpoint sessions can be

controlled, depending on the performance and reliability requirements of the system.

3

Our approach does not specify the mechanism by which individual checkpoints are taken.

It attempts to reduce the overhead in coming to an agreement about a consistent recovery line.

Therefore, it is useful only in systems where the overhead of synchronization between processors

dominates the overhead of taking individual checkpoints. Other limitations to our approach are

the requirements that communication is synchronized between processors and that communication

latency is bounded. Many systems conform to these requirements, and ones that do not can usually

be modified to conform.

The following section describes the assumptions, key ideas, and techniques of the evolutionary

checkpointing algorithm. The subsequent two sections discuss the correctness and performance

considerations. Section V describes application to rollback recovery in both shared-memory and

distributed memory computer systems.

II. EVOLUTIONARY CHECKPOINTING ALGORITHM

A. Computation Model

The computation considered in this paper consists of a number of concurrent processes that

communicate through messages over a network. This model is extended later to a cache-based

shared-memory system by viewing a memory access to nonlocal data as a message from the source

processor that provides the data to the destination processor that receives the data.

In our communication model, messages are assumed to be synchronized: the sender is blocked

until an acknowledge message is received from the receiver. Most lower layers of network models

naturally provide and implement acknowledge mechanisms (e.g., Ethernet). Reliable communica-

tion requires acknowledge messages even at high levels. In distributed memory systems and network

file servers, the read/write requests are in fact implemented with remote procedure calls (RPC)

4

or synchronized messages [22]. Multiprocessor systems also meet this assumption since read/write

accesses are atomic and synchronized. The assumption provides two advantages. First, checkpoint-

ing of a message sender can be requested by the message receiver during a checkpoint session if

necessary. Second, this checkpointing request can be piggybacked on the acknowledgment at low

additional cost.

Christian, and Tong et al. use a bounded communication latency to remove the special check-

pointing marker messages in Chandy and Lamport's checkpointing scheme [16,20,21]. In this paper,

we use a similar bounded communication latency for our evolutionary checkpoint scheme to deter-

mine a consistent recovery line without exchanging extra messages. We denote the communication

upper bound as A in the paper.

In general, communication latency is nondeterministic at the user level due to message size,

processes that are not ready to communicate, and underlying network characteristics. A two

layer approach can be used to achieve bounded communication latency. A message server can be

inserted below the user level process. The user process sends and receives messages only through

its message server. The user level messages can be asynchronous and unbounded in communication

latencies. However, the message server divides messages into packets to remove the uncertainty in

communication latency due to message size. In many networks, proper techniques, such as priority

preemptive scheduling, can guarantee a deterministic communication response for the message

server [23,24]. In some systems, the message server is a natural component, such as the cache

controller in shared-memory multiprocessors, and the pager in distributed memory systems [8,25].

Another approach that can be used to obtain a bounded communication latency is the timeout

mechanism. Even if communication latency is unbounded, messages are delivered within a small

threshold with a high probability [21]. The messages with a communication delay larger than the

5

timeout threshold can be detected and treated as a performance failure (21].

A computation is divided into alternating checkpoint-free and checkpoint sessions. A check-

point is a snapshot of the process state at the time of checkpointing. The operation of our scheme

does not depend on the manner in which the checkpoints are taken, as long as the computation state

at the checkpoint can be restored. Since in a checkpoint session only the last checkpoints taken on

each processor are guaranteed to form a consistent recovery line, the intermediate checkpoints can

be generated in local memory and do not have to written out to a stable or backup storage. Thus,

checkpoint updating can be accomplished quickly by marking the process state unmutable [5,8,261.

The final checkpoints still need to be copied to stable storage. If the overhead of waiting for this

copying to occur is too high, another process can be scheduled to do the copy, without blocking the

computation (26]. We therefore assume the checkpoint operation time during a checkpoint session

to be negligible compared to the communication delay upper bound.

A checkpointing coordinator broadcasts a ckp.start message to initiate a checkpoint session

and a ckp.end message to terminate this checkpoint session. This checkpointing coordinator can

be one of the participating concurrent processes. Our recovery algorithm can handle errors that

cause missing ckp.start or ckp.end messages. The need to broadcast ckp-end can be eliminated by

a local timer at each process. If the local clocks are loosely synchronized with a small shift, using

local clocks to signal ckp.start and ckp.end is possible, similar to other schemes in the literature

[20,211.

The point of time at which a process enters a checkpoint session is its entry point to the

checkpoint session. Similarly, the time at which a process exits a checkpoint session is its exit point

to the checkpoint session. The set of the entry points for a checkpoint session form the checkpoint

session entry line, and the set of exit points for a checkpoint session form the checkpoint session

6

exit line. The reception points of ckp.start and ckp.end form the initial entry line and exit line for

the checkpoint session.

B. Approach

In order to obtain a consistent recovery line, we want to eliminate the messages that cross the

recovery line by achieving three goals:

1. There is at least one local checkpoint for each process, and thus a recovery line, during a

checkpoint session.

2. There are no messages exchanged across the entry line or exit line.

3. Inside the checkpoint session, messages do not cross the current potentially consistent recovery

line.

To fulfill these requirements, our evolutionary checkpointing scheme makes use of the following

techniques:

" Upon entering a checkpoint session, every process immediately takes a checkpoint. This

guarantees that there always exists a recovery line from the beginning of the session.

" In order to eliminate messages crossing the checkpoint session entry line, the initial entry

points are adjusted to include crossing messages in the checkpoint session.

• To remove messages crossing the exit line, the initial exit points are adjusted to exclude

crossing messages from the checkpoint session.

* Inside the checkpoint session, checkpointing is synchronized with communication. Both the

receiver and sender of a message take a new local checkpoint immediately after the communi-

7

local variables and operation for each node:

ckp.num: checkpoint number (tine stamp);
ckp-session: checkpointing in session flag

0 - not in a checkpointing session
>0 - ckp.num currently in session

checkpoint(n): make a local checkpoint with checkpoint number n
enter-ckp.session() // enter a checkpoint session

{ ckp.num++; ckp.session - ckp.num;
checkpoint(ckp.num);

Augmented message format:

message : <ckp.num, ckpsession, normal message>;

ack: acknowledge: <ckp.num, normal acknowledge>
ckp-nun - 0 : no need to checkpoint

>0: makes a checkpoint with
checkpoint number ckp-num.

Figure 1. Local Variables and Operations at Each Process Node.

cation. This communication synchronized checkpoint updating leaves the exchanged message

behind the recovery line and makes the recovery line evolve towards a consistent line.

* The ckpend message is signaled 2 A after ckp-start. We will show that this condition prevents

messages from completely bypassing the checkpoint session.

C. Detailed Description

Figure 1 dcscribes the local data structures needed to implement evolutionary checkpointing 2.

Figures 2 and 3 describe the detailed algorithms for the message sender and receiver.

2 The appended checkpointing information such as the checkpoint number can be eliminated if the delivery of
ckp.start and ckp.end is reliable, since using mismatches in checkpoint numbers to detect the missing ckp.start and
ckp.end messages is not necessary.

ack - send-..essag.(msg);
if (ack.ckp..num > 0) / / need to make a local checkpoint

if (ckp..nuz + I -ack. ckp...um) (
/receiver already passed the entry line
/advance local checkpoint entry point to now

enter-.ckp..sessionO);
1else it (ckp-.um- - ack. ckp..num){

// both sender and receiver in checkpointing session
checkpoint (ckp-.nim);

}else { Idetect performance fault or missing ckp-start
//or ckp..end msgs (Lemma 3).

errao ;

}else it (ack.ckp..zm - 0) { /no need for local checkpointing
if (ckp..session !- 0) {

1receivor already exits its session
Iadjust its checkpoint exit point to now.

ckp..session = 0;

}else // impossible by the ack format
errorO:

Figure 2. Sender Algorithm.

---- --- --- --- --- ---- --- --- --- --- ---- --- --- --- --- -- 9

Vhen a ckp..start is received,

if (ckp-.start .ckp-.nlzm - ckp-.num+ I U ckp-.sess ion - 0)
enter-.ckp..sessiono; //a now ckp-.session

else if (ckp-.start .ckp-.nm - ckp-.nus U ckp..session - 1)
// ignore it; its entry point has been adjusted before.

else errorO; // detect missing ckp-.start/end usgs.

When a ckp-.end is received.

if (ckp-.end. ckp..num - ckp..num){
if (ckp..session - 1) ckp..session - 0; // exit the session
// else ignore it; its exit point has been adjusted before.

*iese errorO; // detect missing ckp..start/end nags.

when a message is received,

if (ckp..session) (// checkpointing in session
if (msg. ckp.num + I - ckp-.num) (

// sender yet to enter checkpoint ing session;
ack-.back(ckp.num); // ask sender to checkpoint
checkpoint (ckp...nm);

}else if (msg. ckp...nm - ckp..num){
// both sender and receiver in the ckp session;
if (mug. ckp..session - ckp..num) {

Isender still in checkpointing session;
Iboth update their local checkpoints.

ack..back(ckp.num);
checkpoint (ckp..nmm);

}else {
// sender exited the session: no checkpoint update.
ack..back(0);

)else // detects missing ckp-start/end asgs
error()

}else { // out of the checkpointing session
if Cckp-.num - msg.ckp-.num) {

Iboth sender and receiver out of the session;
Ino local checkpointing asked for the sender.

ack..back(0);
}else if (ckp-num.I - usg.ckp..num)(

Ireceiver yet to enter the checkpointing session;
Iadvance the local entry point to now.

ckp..num44;
ckp..session - ckp..num;
ack..back(ckpjium);
checkpoint (ckp..num);

}else //performance fault or ckp..start/end missing:
/mag crosses the ckp session (lemma 3).

erroro;

Figure 3. Receiver Algorithm.

10

Exit point adjustnent
Process I C1l C12 C13

0
m2

Enty point adjustment

y Enry point djuamenm

* Receptmon point ofckp.st 0 Gyawnum local cinckpoint

4 R o oof ckp_ I C o-a cCh32koI

Figure 4. Checkpoint Session and Recovery Lines.

0.1. Entering a Checkpoint Session

Upon receiving the ckp..start signal from the checkpointing coordinator, a process enters the

checkpoint session ad takes a local checkpoint by saving its process state. The different session

entry points of the processes form the session entry line. The initial set of local checkpoints provides

a potentially inconsistent initial recovery line. For example, the initial recovery line {C11, C21,

C31, C41F in Figure 4 is not consistent since if process 2 is restarted from C21, it will not resend

message m2, while if process I is restarted from Cli, it will wait for this message.

C.2. Adjusting the Entry Points

If a process that has not entered the checkpoint session exchanges a message with a process

already in the checkpoint session, it will notwit for the ckpstart to enter the checkpoint session.

Instead it markss entry point as if it has received the ckpon start before the message exchange and

11

takes its initial checkpoint right after the exchange. When ckpstart is subsequently received, it is

ignored. The adjustment of an entry point from the ckpstart reception point is demonstrated in

Figure 4 where message ml crosses the original entry line (the ckp.start reception line). By moving

the entry point of process 4 to the point of communication, ml is included in the checkpoint session.

Therefore, process 4 makes its initial checkpoint C41 while process 3 updates its local checkpoint

C31 with C32 at the request piggybacked on the acknowledge from process 4.

C.3. Updating Local Checkpoints

If a message is exchanged between two processes inside a checkpoint session, the receiver

updates its local checkpoint to the current state. Me.nwhile, it also piggybacks on the acknowledge

of the message a request to the sender to update its local checkpoint. In Figure 4, the message m3

between processes 2 and 3 leads to the updating of C21 and C32, to C22 and C33, respectively.

This checkpoint updating makes the recovery line evolve to consistency by including the exchanged

message in the checkpointed state. For example, when process 2 updates C21 with C22 and process

3 updates C32 with C33, they include m3 in the checkpointed state. The new recovery line fC12,

C22, C33, C41} is consistent.

In our scheme, a sender takes a local checkpoint when the acknowledge from the receiver re-

quires it to. During a checkpoint session, local checkpointing is synchronized with the computation.

as in communication synchronized checkpointing schemes [5,8,27,28]. Our approach can be viewed

as a scheme that samples, during checkpoint sessions, a small fraction of checkpoints made by the

communication synchronized schemes.

12

C.4. Adjusting the Exit Points

When a process is in a checkpoint session and receives a ckpend, it exits the checkpoint session.

If the process exchanges a message with a process that has exited the session, the process marks

its exit point and ignores the subsequently received ckp.end. No checkpoint updating is performed.

In this manner, the message exchange is excluded from the checkpoint session. It can be shown

that when the processes reach the exit line, the current local checkpoints form a consistent recovery

line. Message m5 in Figure 4 illustrates a case of exit point adjustment. Message m5 crosses the

original exit line (the ckp.end reception line). When process 1 is notified through the message

acknowledgement that the receiver of m5 is already outside the checkpoint session, it immediately

moves its exit point to the point of communication and exits the checkpoint session. In this manner,

m5 is excluded from the checkpoint session. When the last process leaves the checkpoint session,

the exit line is complete, and the set of current local checkpoints ({C13, C23, C33, C14} in the

example) comprises a consistent recovery line.

C.5. Avoiding Bypassing Messages

Provided that communication delay is bounded by A, broadcasting ckp.end 2A after the

ckpstart broadcast guarantees that no messages bypass the checkpoint session. That is, there is

no message that originates before a checkpoint session and is received after the checkpoint session,

such as message m4 in Figure 5. If a message were allowed to bypass the checkpoint session, some

checkpoints of the resulting recovery line might be missed. For example, process 3 interacts with

process 2 after passing its exit point but before receiving m4 from process 4. Process 3 has already

exited the checkpoint session, thus the exit point of process 2 is adjusted and the local checkpoints

are not updated to C24 and C33. Even if we let process 3 update its local checkpoint after receiving

13

Process I

0Cll C12

m2 Exit line

Process 2 'C21 C22 C23 C24

.. si checkpoints

Process 3 X

C31° C3 C34

Enr ln m4

IC41

0 Reception point of ckp.start 0 Overwriten local checkpoints

<I Reception point of ckp-end I Crent local checkpoints

Figure 5. Example of a Message Bypassing a Checkpoint Session.

m4, the missing checkpoints (C24, C33) make the current recovery line ({C12, C23, C34, C41})

inconsistent, since there is a message exchange across the exit line (m3).

C.S. Handling Missing Checkpointing Messages

Missing ckp.start and ckpend messages can be detected by the evolutionary algorithms in

Figures 2 and 3. Suppose process j missed a ckp.start message for a checkpoint session. If it com-

municates with another process already in the checkpoint session, this missing ckp.start does not

affect the checkpointing algorithm, since this message is ignored due to the entry point adjustment.

If process j receives a ckp-end message, its local checkpoint number is mismatched with the check-

point number in the ckp.end message. This detects a missing ckp.start. In general, mismatches

in the local checkpoint number and the checkpoint number in messages detects errors in message

delivery in the evolutionary scheme.

14

III. CORRECTNESS

There exist an entry line and an exit line for each checkpoint session. Every process receives

a ckp.start message for each checkpoint session. The only time the entry point is not the reception

point of the ckp.start is when the entry point has been adjusted to an earlier point due to a message

exchange between a process that is yet to enter the checkpoint session with another process already

in the checkpoint session. So there is always an entry line at or before the ckp.start reception

line. Similarly, there is always a session exit line at or before the ckp.end reception line. Since the

ckp.end is broadcast 2A after the ckpstart, the ckp.end will be received by each process after the

ckp.start. If the ckpend reception point is the exit point for a process, the exit point is behind its

corresponding ckp.start reception point and thus its entry point. If the exit point has been adjusted,

the process must be in the checkpoint session when the adjustment occurs, and the exit point will

not be adjusted ahead its entry point. Thus, the exit line is always behind the corresponding entry

line. Therefore,

Lemma 1: Given the algorithm in Figures 2 and 3, there is an entry line followed by an exit

line for each checkpoint session.

We will show that there is a recovery line after an entry line. That is, every process will

have a local checkpoint after this line. Upon receiving a ckp.start, a process either makes a local

checkpoint or ignores this ckp.start. According to the algorithm, the process ignores a ckp.start

only when its entry point has been adjusted to an earlier time than the ckp.start reception point.

As a part of its entry point adjustment, a local checkpoint is made for this process. This proves

the following lemma.

Lemma 2: Given the algorithm in Figures 2 and 3, there is a recovery line after the last

process passes the entry line of a checkpoint session.

15

Lemma 1 and Lemma 2 imply that there is a recovery line when the last process passes the

exit line. Before we show that this recovery line is consistent, we first prove a lemma which assures

that the minimum time difference between the entry point for one process and the exit point for

any other process is at least one A. This condition assures that no messages bypass the checkpoint

session. That is, a message originated before a checkpoint session will not be received after the

checkpoint session and vice versa. Let (.i, ei) be the pair of the entry time for process i and the

exit time for process j for the same checkpoint session.

Lemma 3: Given the algorithm in Figures 2 and 3, ej - ai > A for any (si, ej) and i 0 j.

Proof: Let (ai, ej) be the pair with the minimum difference among all the possible pairs.

There are only two cases possible. (1) ej is the time of ckp-end reception by process j. According

to Lemma 1, s, is either the reception time of the ckp.start at process i or an earlier point than

the reception time due to an entry point adjustment. Therefore, we need only to prove that the

time difference between ej and the reception time of the ckp.start at process i is greater than A.

Since any message will be delivered within A and the ckp-end is broadcast 2A after the ckp.start,

no process will receive a ckpstart later than one A after the broadcast of ckp.start and no process

will receive a ckp.end before 2A after the broadcast of ckp.start. Therefore, ej - s, > A. (2) ej

is not the time of ckp.end reception by process j. This case occurs only when process j receives a

message from a process (e.g., process k) that passed the exit line when process j was still in the

checkpoint session (i.e., it is yet to receive the ckp.end). According to the algorithm, j will adjust

its exit point from its ckp.end reception point. This case is impossible. Otherwise, ej cannot be

in the minimum pair of (si, ej), since process k has passed the exit line before process j (ek < ej).

This contradicts that (s,, ei) is the smallest pair of all the possible pairs that include (si, ek). 0

16

A recovery line is consistent if all messages sent before (after) a consistent recovery line

are received before (after) this line. That is, there are no message exchanges across a consistent

recovery line. This guarantees that any rollback will not need to cross this line and thus eliminates

the domino effect of rollback propagation.

Theorem 1: Given the algorithms in Figures 2 and 3, the set of the current local checkpoints

forms a consistent recovery line when the last process exits a checkpoint session.

Proof: According to Lemmas 1 and 2, there is a recovery line when the last process exits a

checkpoint session. Suppose a process receives a message after this exit line. The sender cannot

be in the state prior to the checkpoint session, since the sender has yet to pass its entry point and

thus its exit point. This implies that the exit line is still incomplete. The sender cannot be in

the checkpoint session either; otherwise, the algorithm requires the receiver to ask the sender to

adjust its exit point to exclude the message exchange from this checkpoint session. Therefore, the

sender must be after its exit point. Suppose a process sends a message after the exit line. The

receiver cannot be in the state prior to the checkpoint session; otherwise, this gives an incomplete

exit line. The receiver cannot be in the checkpoint session either, since the algorithm will adjust

the receiver's exit point to exclude the message from this checkpoint session. Thus, the receiver

must have passed the exit line. Therefore, there is no message exchange across the exit line, and

the recovery line after the exit line is consistent. Since there is no local checkpoint updating after

the exit line, this consistent line remains until the next checkpoint session. 0

17

IV. PERFORMANCE CONSIDERATIONS

A. Convergence Time

We define the convergence time of our evolutionary checkpointing scheme as the time for

a potentially inconsistent recovery line to evolve into a consistent recovery line. This parameter

determines the minimum length of a checkpointing session. More importantly, it also affects the

overhead involved in our scheme since the longer the convergence time, the more local checkpoint

updating is likely. The following theorem gives an upper bound on the convergence time of our

algorithm.

Theorem 2: Given the algorithm in Figures 2 and 3, the convergence time of the recovery

line during a checkpointing session is less than 3 A.

Proofh According to the algorithm, the first process enters the checkpointing session upon

receiving a ckp.start, which occurs no earlier than the ",p.start broadcasting time. The last process

to receive a ckp.end will receive it no later than 3 A after the ckp.start broadcast since ckpend is

broadcast 2 A after ckp.start, and ckp.end will be delivered to every process within A. According

to the proof of Lemma 1, the exit line forms before the ckpend reception line because the exit

point is either the reception point of a ckp.end or at an earlier time than the reception point due to

the exit point adjustment. Theorem 1 guarantees a consistent recovery line after all processes pass

the exit line. Therefore, there is a consistent recovery line no later than 3 A after the ckp.start is

broadcast. Thus the convergence time is less than 3 A. 3

B. Run-time Overhead

The expected run-time overhead (Ck) can be simply expressed in terms of the frequency of

checkpoint sessions (n), checkpointing time per session (C.), rollback probability (pr) and recovery

18

overhead (Cr) as

Ck = nC. + npC,

C. = Cii + NupdateC~pdcite

where Ci,,t is the checkpoint cost of the initial checkpoint made at the entry of a checkpoint session;

Ntqv, te and Cgpdzte are the frequency and the overhead of local checkpoint updating respectively.

The first term, nC., in CA: represents the checkpointing overhead, while the second term, nprCT, is

the recovery overhead.

Given the frequency (n) and length (convergence time) of checkpoint sessions, the checkpoint-

ing overhead, C., depends on the frequency and overhead of local checkpoint updating. The number

of times that a local checkpoint is updated is computation specific. Every time a message is sent

- received inside a checkpoint session, the local checkpoint has to be updated. Given the limited

convergence time, the number of updates is likely to be limited.

To determine the number of checkpoint updates that can be expected in a distributed memory

system we traced the commu-mcation patterns of eight parallel programs on an 8-node Intel IPSC/2

hypercube (Table 1). We took random snapshots of the computation with lengths varying from

10 to 500 msec. On the IPSC/2, message latency averages about 1 msec/K [29]. Our snapshot

lengths therefore represent conservative estimates of the session lengths that could be chosen for

the IPSC/2. For every program and snapshot length we performed 1000 random trials.

Table 2 shows the frequency of messages (which corresponds to the number of checkpoint

updates) for different session lengths. For the numerical programs (frt, mult, gauss, qr and

navier), the average number of messages transmitted or received is less than 3. However, the

number of messages in a particular checkpoint session can be as high as 244 (qr). Typically messages

in the hypercube occur in bursts when data are distributed to and collected from the nodes. If this

19

Table 1. Hypercube Program Traces.

Execution Message
Program Description Time # recvs. # sends avg. size

(msec) (bytes)
fIt fast Fourier transform 51363 110 60 97.7K
mult matrix multiplication 4160 48 43 18.5K
gauss Gauss elimination 47222 6764 2706 622.8
qr QR factorization 3590 4105 4098 508.9
navier fluid flow simulator 21315 118 118 22.7
tester circuit test generator 123339 13215 10786 264.3
cell circuit cell placement 50645 42619 42764 31.7
router VLSI channel router 435648 371700 371650 18.9

Table 2. Communication Characteristics of Hypercube Traces.

Session Messages Session Messages
Trace length max average Trace length max average

(mec) # # (msec) # #
10 1 0.12 10 4 0.11

fft 50 2 0.12 navier 50 4 0.11
100 2 0.12 100 5 0.12
5CO 3 0.13 500 10 0.13

10 4 0.05 10 15 0.34
mult 50 4 0.06 tester 50 44 0.98

100 4 0.06 100 67 1.57
500 4 0.07 500 100 4.16

10 10 0.33 10 32 2.05
gauss 50 40 0.81 cell 50 104 7.76

100 80 1.05 100 149 13.48
500 243 2.24 500 451 28.21

10 7 0.90 10 30 2.56
qr 50 30 1.92 router 50 123 10.58

100 58 1.85 100 213 21.10
500 244 2.34 500 505 100.55

is the case, compiler-assisted techniques that detect communication bursts in programs and plan

checkpoint session accordingly could be used to decrease the number of checkpoints in a session

[30,311.

The overhead of updating a local checkpoint varies with the checkpointing mechanism used. If

a new complete state is saved as the checkpoint update, Cupdate is the same as the initial checkpoint

cost, Ci,,i, [30,32]. If only the change in state since the last checkpoint is needed to update the

checkpoint (e.g., flushing dirty pages in a virtual memory system), Cupdat, is likely to be smaller

20

than Ciit [8]. If local checkpoint updating is implemented with logging messages, Cupdate is the

cost of message logging. In the above hypercube example, message logging may be appropriate for

high message density programs such as router.

Recovery overhead, Cr, is related to the reprocessing time after recovery, which on the average

is one-half of the checkpoint interval. Studies on checkpoint placement have shown that the rollback

probability, p, is typically small enough to ensure low recovery overhead (np7 C,) compared to

checkpointing overhead (nC.), even when the checkpoint interval and/or recovery cost are large.

Schemes with an inherent high checkpoint frequency fail to take advantage of the benefits of making

checkpoint intervals large. In the evolutionary approach, the checkpoint interval can be chosen as

large as necessary to reduce checkpointing overhead [33-361.

C. Memory Overhead

The storage requirement for the evolutionary checkpointing is two global checkpoints, one

for the last committed checkpoint and one for the current working buffer for the uncommitted

checkpoint. For virtual memory-based systems, the working buffer can be set copy-on-write to the

committed checkpoint. The working space is split with the committed checkpoint only when a

modification is needed. After the current checkpoint is committed, the space for the old committed

checkpoint can be switched to the working space.

V. APPLICATIONS TO SHARED MEMORY SYSTEMS

Recently there has been an active research interest in recoverable shared-memory and shared

virtual memory computer systems [5,8,27,28,37-39]. Both globally synchronized and communication-

synchronized approaches have been applied to these systems. The main drawback of these schemes

21

is uncontrollable checkpointing [27]. In this section we will demonstrate how evolutionary check-

pointing can be adopted to these situations.

A. Recovery in Cache-Based Multiprocessor Systems

In cache-based systems, cache-based rollback error recovery can be used to recover from tran-

sient processor errors [40]. In this recovery scheme, the checkpoint state is kept in the main memory,

those dirty cache blocks that have not been modified since the last checkpoint, and the processor

registers. A processor takes a checkpoint whenever it is necessary to replace a dirty block in its

cache. At a checkpoint, the processor registers are saved, and all dirty cache blocks are marked un-

changeable. Unchangeable lines may be read, but have to be written back to memory before being

written. Rollback is accomplished by simply invalidating all cache lines except the unchangeable

lines, restoring the processor registers, and restarting the computation.

Wu et al. proposed a cache-based recovery method for shared-memory multiprocessor systems

using the communication-synchronized approach [8]. A communication is an access to a dirty cache

block from the private cache of another processor. Communication between processors induces a

checkpoint on the source processor. The destination processor does not need to be checkpointed,

since if it rolls back it can always acquire a new copy of the transmitted data from the source

processor. The effect is similar to message logging, in that the data received are available again

after an eventual rollback. Ahmed et al. have proposed a globally synchronized checkpointing

strategy for cache-based error recovery in multiprocessors [5]. They assume that a checkpoint

operation can be synchronized among all processors and takes only one cycle.

These cache-based schemes have the disadvantage that the frequency of unavoidable check-

points, due to replacement of dirty lines, is high [27]. However, the overhead in taking a checkpoint

is very low. Therefore cache-based recovery is applicable to updating the checkpoints during the

22

checkpoint session in our evolutionary scheme in which checkpointing activities are only for a very

short period.

To apply our approach to cache-based recovery, we first map our system model to the shared-

memory multiprocessor model. The cache controllers serve as the message servers of our model.

Caches behave as the normal caches for checkpoint free computations, and as Wu's caches during

checkpoint sessions. A communication is a read or a wr.te access to a nonlocal cache. Communica-

tion in multiprocessors is synchronized since the processor is blocked until data are accessed. The

memory access time, and therefore the communication time, is also bounded.

A global interrupt can be used as the ckp.start and ckp.end broadcasting mechanism 3. This

global interrupt sets or dears the local flag ckp.session at each processor as if a ckp.start or

ckp.end is broadcast. During checkpoint sessions, the checkpoint operation is synchronized with

communication such as in Wu's scheme 4. The checkpoint session can be short since the convergence

time is only 3 times the maximum access time to a block present in another processor's cache. At

the end of the session, the checkpoint is committed, and the cache is switched from checkpointing

operation to normal operation.

A shadow paged memory is needed because the state changes between checkpoint sessions can

not overwrite the committed checkpoint (28]. A copy of the memory space is used for the committed

checkpoint and another for the temporary working spacing. The unchangeable cache blocks are

written back to the checkpoint pages when they are replaced from the caches. A copy-on-write

mapping of the working pages to the checkpoint pages may save memory and avoid unnecessary

3 Since the global interrupts can usually be assumed to be delivered re'. 4bly and no error detection for mismatching
checkpoint session numbers is necessary, the extra checkpointing information appended to each message required by
the evolutionary algorithms (Figures 1, 2 and 3) can be eliminated.

'In a remote memory access, a source processor that provides data and a destination processor that initiates the
request for accessing the data can be distinguished. The checkpoint operation at the destination processor can be
eliminated since the source processor backs up the data requested in its local checkpoint and the destination processor
can retry the access and acquire the data from the checkpoint.

23

memory copying. A rollback simply invalidates all cache blocks except unchangeable blocks and

restarts all processors from the committed checkpoint.

Five parallel program traces running on seven processors of an 8-processor Encore Multimax

510 were used to evaluate this evolutionary scheme [27]. Program tgen is a test generator; fsim

is a fault simulator; pace is a circuit extractor; phigure is a global router, and gravsim is an N-

body collision simulator. Each benchmark program runs for about 10 seconds. At least 80 million

references are traced in each applications [27]. The caches used are 64 K two-way set associate

caches with 32-byte blocks. To apply our evolutionary scheme, we need to estimate the maximum

access time for the Encore Multimax 510. The longest access is the cache miss that acquires the bus

last when all processors have a miss. Since a 32-byte block takes 320 nsec (nanosecond) to fetch,

the longest access is 8 x 320 or 1.28 psec (microsecond) [41]. Thus, A L_ 1.28 psec. The processor

is rated at 8.5 MIPS; the maximum number of instructions executed during A is about 8.5 x 8

x 1.28 or 87.04. Therefore, the convergence time for the Multimax 510 is about 3.84 11sec or 262

instructions. We used the number of references to determine the session length. We simulated five

different session lengths of around 262 instructions: 10, 50, 100, 500, and 1000 instructions. The

interval between checkpointing sessions for the evolutionary scheme can be set at any value. For

our evaluation we set it at one million references. As a comparison, we evaluated the cache-based

schemes of Wu et al. and Ahmed et al. The results are presented in Figures 6, 7, and 8.

The number of checkpoint updates that need to be performed during a checkpoint session

depends on the amount of communication in the program. Figure 6 presents the average and

maximum number of updates observed during a checkpoint session for each of the programs. For

all but the largest session lengths in fsim and tgen, the average, number of updates is at most one.

For the longer sessions in fsim and tgen, the average is driven up by a few sessions with many

24

(US) (54)

Seion Lwigth
10a

MOM

Mon

11)1i l(l 1

gnavm POW phiuM film alen u uce

Figure 6. Average Number of Checkpoint Updates per Session.

updates. For all traces combined, however, even with a session length of 1000, the average number

of updates is only around 2.5. We also found that the checkpoint size for an checkpoint update is

either one or two. This indicates that local checkpoint updating only produces a limited run-time

overhead.

A comparison can be made between the average checkpoint frequency for the evolutionary

scheme and the other cache-based schemes. It should be noted that the checkpoint frequency for

the evolutionary scheme can be controlled by adjusting the interval between sessions, while the

checkpointing frequency for the other schemes is predetermined by the communication patterns of

the applications we traced. For the evolutionary schemes we consider both the initial checkpoints

in the session and the further updates to calculate the average frequency. The checkpoint frequen-

cies are plotted in Figure 7. For a session interval of one million and a session length of 500. the

checkpoint frequency varies between 1 and 2.5 per million accesses. On the other hand, the fre-

25

IEvekudkowy (fo SO law wess cnart)

1S3

chockpoirf

per to0
mifllon Tof.

graveim pece phIgume faIM tgen aM tmace

Figure 7. Scheme Comparison: Checkpoint Frequency.

quency for the globally synchronized scheme varies between 1.7 and 1500 per million accesses, and

the frequency for the communication-synchronized scheme varies between 200 and 1000 per million

references. The overhead of cache-based chekpointing depends on the number of cache blocks that

are marked unchangeable (the checkpoint size) since extra cycles are needed to write these blocks

back before they can be used. Figure 8 presents the sum of the sizes for all checkpoints during the

execution of the program. This total checkpoint size is about an order of magnitude smaller for the

evolutionary scheme than for the other schemes '. All the data show that the evolutionary scheme

can provide checkpointing with a more controllable frequency and at a lower cost than previous

schemes.

31t may be worth noticing that the total checkpoint size is basically determined by the number of checkpoint
sessions and the size of the initial checkpoints in each checkpoint session, since the number and size of checkpoint
updates in the evolutionary scheme are limited. The number of checkpoint sessions can be controlled with proper
placements of checkpoint sessions.

26

Checkpoint Scheme

10 ft aL

10
e

toll

size $°

102......

graveim pace phigure film tgen all traces

Figure 8. Scheme Comparison: Total Checkpoint Size.

B. Shared Virtual Memory System

A shared virtual memory system supports a shared-memory programming model in a dis-

tributed computer environment [221. An interprocessor memory access may be implemented as

an RPC (synchronized message) over a network. A communication synchronized checkpointing

scheme similar to those for multiprocessor systems was proposed by Wu and Fuchs [28]. In such a

system, the virtual memory is shared, cached in the main memory of individual processing nodes,

and backed up on a stable storage. A checkpoint operation consists of flushing all dirty pages and

saving processor registers to the stable storage. Whenever there is a remote access to a dirty page,

the source processor takes a checkpoint. The checkpoint operation at the destination processor is

eliminated since the source processor logs the requested page as a part of its checkpoint. If the des-

tination processor rolls back, it can access the logged page from the checkpoint. Since the system

is expected to be recoverable after node crashes, a shadow page system is used to accommodate

27

the last committed virtual space (checkpoint) and the working space between checkpoints.

Similar to the multiprocessor case, our evolutionary scheme can be mapped to the distributed

virtual memory case to provide controllable checkpointing. In this case, the message server is the

pager process, and communication is a remote access to a dirty page. A checkpoint operation is

performed at the source node during checkpoint sessions. A remote memory access is synchronized

as the result of the RPC mechanism. Communication delay is likely to be bounded since page size

is limited and the network is usually dedicated to the system. The timeout mechanism in RPC will

further ensure the communication bound.

A global interrupt for the ckp.start and ckpoend broadcasting is not possible in a distributed-

memory system, thus we need to use message broadcasting for ckp.start and ckp.end. To reduce

the cost of flushing dirty pages, checkpoint operations may mark the local dirty pages unchangeable

in memory. The marked pages are committed after the checkpoint session ends. A recove;y simply

restarts all processes from the recovery line. Unlike the multiprocessor case, the shadow pages

needed for our evolutionary scheme are already used in the Wu and Fuchs scheme. Thus, our

scheme incurs no additional memory overhead.

VI. SUMMARY

In this paper we have presented an evolutionary checkpointing strategy for concurrent pro-

cesses. This checkpointing scheme starts from a potentially inconsistent recovery line by check-

pointing individual processes independently. Local checkpoints are updated whenever there is

communication during the checkpoint session. This local checkpoint updating makes the recovery

line evolve into a globally consistent recovery line. We showed that the convergence time from an

inconsistent recovery line to a consistent one is three times the maximal communication latency

28

upper bound.

We verified the low overhead of our evolutionary scheme by measurements on different com-

puter systems. Unlike globally synchronized checkpointing schemes, our evolutionary scheme re-

quires no global synchronization protocols. The evolutionary approach provides controllable check-

pointing in contrast to the communication synchronized schemes. The trace-based evaluation has

shown that our scheme can achieve low-cost checkpointing at a controllable interval for error re-

covery in multiprocessors and distributed virtual memory systems. However, odr scheme is limited

by the requirement of synchronous communication with a-bounded latency. In the systems with

low overhead synchronization mechanisms, our scheme may not be necessary, since a global syn-

chronization scheme may be simpler to implement than our approach.

REFERENCES

[1] B. Randell, "System structure for software fault tolerance," IEEE Trans. Software Eng., Vol. 1,
No. 2, pp. 220-232, June 1975.

[2] P. A. Lee and T. Anderson, Fault Tolerance: Principles and Practice. Springer-Verlag/Wien,
1990.

[3] K. Tsuruoka, A. Kaneko, and Y. Nishihara, "Dynamic recovery schemes for distributed pro-
cesses," Proc. IEEE 2nd Symp. on Reliability in Distributed Software and Database Syst.,
pp. 124-130, 1981.

[4] L. Lamport, "Time, clocks, and the ordering of events in a distributed system," CA CM, Vol. 21,
No. 7, pp. 558-566, July 1978.

[5] R. E. Ahmed, R. C. Frazier, and P. N. Marinos, "Cache-aided rollback error recovery (carer)
algorithms for shared-memory multiprocessor systems," Proc. 20th Int. Symp. Fault- Tolerant
Comput., pp. 82-88, 1990.

[61 J. F. Bartlett, "A nonstop kernel," Proc. ACM 8th Symp. Oper. Syst. Principtes, pp. 22-29,
Dec. 1981.

[7] A. Borg, J. Baumbach, and S. Glazer, "A message system supporting fault tolerance," Proc.
ACM 9th Symp. Oper. Syst. Principles, pp. 90-99, Oct. 1983.

[8] K.-L. Wu, W. K. Fuchs, and J. H. Patel, "Error recovery in shared memory multiprocessors
using private caches," IEEE Trans. Parallel and Distributed Syst., Vol. 1, No. 2, No. 2, pp. 231-
240, 1990.

29

[9] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, "Fault tolerance under unix,"
ACM Trans. Comput. Syst., Vol. 3, No. 1, No. 1, pp. 63-75, Feb., 1985.

[10] M. L. Powell and D. L. Presotto, "Publishing: A reliable broadcast communication mecha-
nism," Proc. 9th Symp. Oper. Syst. Principles, pp. 100-109, Oct., 1983.

[11] D. B. Johnson and W. Zwaenepoel, "Recovery in distributed systems using optimistic message
logging and checkpointing.," J. Algorithms, Vol. 11, No. 3, pp. 462-491, Sept. 1990.

[12] T. T.-Y. Juang and S. Venkatesan, "Efficient algorithms for crash recovery in distributed
systems," Proc. 10th Conf. Foundations of Software Technology and Theoretical Comput. Sci.,
pp. 349-361, 1990.

[13] T. T.-Y. Juang and S. Venkatesan, "Crash recovery with little overhead," Proc. 11th Int. Conf.
Distributed Comput. Syst., pp. 454-461, May 1991.

[14] A. P. Sistla and J. L. Welch, "Efficient distributed recovery using message logging," Proc. 8th
Symp. Principles of Distributed Comput., Aug. 1989.

[15] R. E. Strom and S. A. Yemini, "Optimistic recovery in distributed systems," ACM Trans.
Comput. Syst., Vol. 3, No. 3, pp. 204-226, Aug. 1985.

(16] K. M. Chandy and L. Lamport, "Distributed snapshots: Determining global states of dis-
tributed systems," ACM Trans. Comput. Syst., Vol. 3, No. 1, pp. 63-75, Feb. 1985.

[17] M. Spezialetti and P. Kearns, "Efficient distributed snapshots," Proc. 6th Int'l. Conf. Dis-
tributed Comput. Syst., pp. 382-388, 1986.

[18] R. Koo and S. Toueg, "Checkpointing and rollback-recovery for distributed systems," IEEE
Trans. Software Eng., Vol. 13, No. 1, pp. 23-31, Jan. 1987.

[19] K. Li, J. F. Naughton, and J. S. Plank, "Checkpointing multicomputer applications," Proc.
10th Symp. Reliable Distributed Syst., pp. 2-11, 1991.

[20] Z. Tong, R. Y. Kain, and W. T. Tsai, "Rollback recovery in distributed systems using loosely
synchronized clocks," IEEE Trans. Parallel and Distributed Syst., Vol. 3, No. 2, pp. 246-251,
March 1992.

[21] F. Cristian, "A timestamp-based checkpoint protocol for long-lived distributed computations,"
Proc. 10th Symp. Reliable Distributed Syst., pp. 12-20, 1991.

[22] K. Li, "IVY: A shared virtual memory systems for parallel computing," Proc. Int. Conf.
Parallel Processing, pp. 94-101, 1988.

[23] H. Tokuda, C. W. Mercer, Y. Ishikawa, and T. E. Marchok, "Proiority inversions in real-time
communication," Proc. 10th IEEE Real-Time Syst. Symp., Dec. 1989.

[24] H. Tokuda and C. W. Mercer, "ARTS: Adistributed real-time kernel," ACM Oper. Syst. Rev.,
Vol. 23, No. 3, July 1989.

[25] K. Li and P. Hudak, "Memory coherence in shared virtual memory systems," Proc. 5th ACM
Symp. Principles Distributed Comput., pp. 229-239, 1986.

30

[26] K. Li, J. F. Naughton, and J. S. Plank, "Real-time, concurrent checkpoint for parallel pro-
grams," Proc. 2nd ACM SIGPLAN Symp. Principles and Practice of Parallel Programming,
pp. 79-88, March 1990.

[27] B. Janssens and W. K. Fuchs, "Experimental evaluation of multiprocessor cache-based error
recovery," Proc. Int. Conf. Parallel Processing, Vol. I, pp. 505-508, Aug. 1991.

(28] K.-L. Wu and W. K. Fuchs, "Recoverable distributed shared virtual memory," IEEE Trans.
Comput., Vol. 39, No. 4, pp. 460-469, April 1990.

[29] J.-M. Hsu and P. Banerjee, "Hareware support for message routing in a distributed memory
multicomputer," Proc. Int. Conf. Parallel Processing, pp. 508-515, Aug. 1990.

[30] C. C. Li and W. K. Fuchs, "CATCH: Compiler-assisted techniques for checkpointing," Proc.
20th Int. Symp. Fault-Tolerant Comput., pp. 74-81, 1990.

[31] J. Long, W. K. Fuchs, and J. A. Abraham, "Compiler-assisted static checkpoint insertion,"
Proc. 22th Int. Symp. Fault-Tolerant Comput., 1992.

[32] J. Long, W. K. Fuchs, and J. A. Abraham, "Implementing forward recovery using checkpoint-
ing in distributed systems," Proc. 2nd IFIP Working Conf. Dependable Comput. for Critical
Applications, pp. 20-27, Feb. 1991.

[33] C. M. Krishna, K. G. Shin, and Y.-H. Lee, "Optimization criteria for checkpoint placement,"
CACM, Vol. 27, No. 6, No. 6, pp. 1008-1012, Oct. 1984.

[34] A. Duda, "The effects of checkpointing on program execution time," Information Processing
Letters, Vol. 16, pp. 221-229,1983.

[35] E. Gelenbe and D. Derochette, "Performance of rollback recovery systems under intermittent
failures," CACM, Vol. 21, No. 6, No. 6, pp. 493-499, 1978.

[36] J. W. Young, "A first order approximation to the optimal checkpoint interval," CA CM, Vol. 17,
No. 9, pp. 530-531, Sept. 1974.

[37] P. A. Bernstein, "Sequoia: a fault-tolerant tightly coupled multiprocessor for transaction pro-
cessing," IEEE Comput., Vol. 21, pp. 37-45, Feb. 1988.

[38] N. S. Bowen and D. K. Pradhan, "Vitual checkpoints: Architecture and Performance," IEEE
Trans. Comput., Vol. 41, No. 5, May 1992.

[39] T. P. Ng, "Checkpointing in a virtual shared memory system," Tech. Rep. UIUCDCS-R-91-
1700, Department of Computer Science, University of Illinois, Dec. 1991.

(40] D. B. Hunt and P. N. Marinos, "A general purpose cache-aided rollback error recovery
(CARER) technique," Proc. 17th Symp. Fault-Tolerant Comput., pp. 170-175, 1987.

[41] Encore Computer Corporation, Multimax Technical Summary. Encore Computer Corporation,
Jan. 1989.

LIST OF TABLES

1 Hypercube Program Traces..................................... 19

2 Communication Characteristics of Hypercube Traces 20

1,

I

LIST OF FIGURES

1 Local Variables and Operations at Each Process Node 7

2 Sender Algorithm 8

3 Receiver Algorithm 9

4 Checkpoint Session and Recovery Lines 10

5 Example of a Message Bypassing a Checkpoint Session 13

6 Average Number of Checkpoint Updates per Session 24

7 Scheme Comparison: Checkpoint Frequency 25

8 Scheme Comparison: Total Checkpoint Size 26

